Skip Nav

Module 2: Study Design and Sampling

Looks like you do not have access to this content.

❶Define system analysis and design SAD?

Choose a video to embed

Navigation menu
Follow TQR on:
Reader's Guide

Thus, longitudinal studies do not manipulate variables and are not often able to detect causal relationships. Once the researcher has chosen a hypothesis to test in a study, the next step is to select a pool of participants to be in that study.

However, any research project must be able to extend the implications of the findings beyond the participants who actually participated in the study. For obvious reasons, it is nearly impossible for a researcher to study every person in the population of interest. The researcher must put some careful forethought into exactly how and why a certain group of individuals will be studied.

Probability Sampling refers to sampling when the chance of any given individual being selected is known and these individuals are sampled independently of each other. This is also known as random sampling. A researcher can simply use a random number generator to choose participants known as simple random sampling , or every nth individual known as systematic sampling can be included.

Researchers also may break their target population into strata, and then apply these techniques within each strata to ensure that they are getting enough participants from each strata to be able to draw conclusions. For example, if there are several ethnic communities in one geographical area that a researcher wishes to study, that researcher might aim to have 30 participants from each group, selected randomly from within the groups, in order to have a good representation of all the relevant groups.

Non-Probability Sampling, or convenience sampling, refers to when researchers take whatever individuals happen to be easiest to access as participants in a study. This is only done when the processes the researchers are testing are assumed to be so basic and universal that they can be generalized beyond such a narrow sample.

Snowball sampling is not a stand-alone tool; the tool is a way of selecting participants and then using other tools, such as interviews or surveys. Because researchers can seldom study the entire population, they must choose a subset of the population, which can result in several types of error. Sometimes, there are discrepancies between the sample and the population on a certain parameter that are due to random differences. This is known as sampling error and can occur through no fault of the researcher.

Far more problematic is systematic error , which refers to a difference between the sample and the population that is due to a systematic difference between the two rather than random chance alone. The response rate problem refers to the fact that the sample can become self-selecting, and that there may be something about people who choose to participate in the study that affects one of the variables of interest.

For example, a researcher may want to study characteristics of female smokers in the United States. This would be the population being analyzed in the study, but it would be impossible to collect information from all female smokers in the U.

Therefore, the researcher would select individuals from which to collect the data. This is called sampling. The group from which the data is drawn is a representative sample of the population the results of the study can be generalized to the population as a whole.

The sample will be representative of the population if the researcher uses a random selection procedure to choose participants. The group of units or individuals who have a legitimate chance of being selected are sometimes referred to as the sampling frame. If a researcher studied developmental milestones of preschool children and target licensed preschools to collect the data, the sampling frame would be all preschool aged children in those preschools.

Students in those preschools could then be selected at random through a systematic method to participate in the study. This does, however, lead to a discussion of biases in research. For example, low-income children may be less likely to be enrolled in preschool and therefore, may be excluded from the study. Extra care has to be taken to control biases when determining sampling techniques.

There are two main types of sampling: The difference between the two types is whether or not the sampling selection involves randomization. Randomization occurs when all members of the sampling frame have an equal opportunity of being selected for the study. We then interview the selected person and find their income. People living on their own are certain to be selected, so we simply add their income to our estimate of the total. But a person living in a household of two adults has only a one-in-two chance of selection.

To reflect this, when we come to such a household, we would count the selected person's income twice towards the total. The person who is selected from that household can be loosely viewed as also representing the person who isn't selected.

In the above example, not everybody has the same probability of selection; what makes it a probability sample is the fact that each person's probability is known. When every element in the population does have the same probability of selection, this is known as an 'equal probability of selection' EPS design.

Such designs are also referred to as 'self-weighting' because all sampled units are given the same weight. These various ways of probability sampling have two things in common:. It involves the selection of elements based on assumptions regarding the population of interest, which forms the criteria for selection. Hence, because the selection of elements is nonrandom, nonprobability sampling does not allow the estimation of sampling errors.

These conditions give rise to exclusion bias , placing limits on how much information a sample can provide about the population. Information about the relationship between sample and population is limited, making it difficult to extrapolate from the sample to the population. We visit every household in a given street, and interview the first person to answer the door.

In any household with more than one occupant, this is a nonprobability sample, because some people are more likely to answer the door e. Nonprobability sampling methods include convenience sampling , quota sampling and purposive sampling. In addition, nonresponse effects may turn any probability design into a nonprobability design if the characteristics of nonresponse are not well understood, since nonresponse effectively modifies each element's probability of being sampled.

Within any of the types of frames identified above, a variety of sampling methods can be employed, individually or in combination.

Factors commonly influencing the choice between these designs include:. In a simple random sample SRS of a given size, all such subsets of the frame are given an equal probability. Each element of the frame thus has an equal probability of selection: Furthermore, any given pair of elements has the same chance of selection as any other such pair and similarly for triples, and so on.

This minimizes bias and simplifies analysis of results. In particular, the variance between individual results within the sample is a good indicator of variance in the overall population, which makes it relatively easy to estimate the accuracy of results.

SRS can be vulnerable to sampling error because the randomness of the selection may result in a sample that doesn't reflect the makeup of the population. For instance, a simple random sample of ten people from a given country will on average produce five men and five women, but any given trial is likely to overrepresent one sex and underrepresent the other.

Systematic and stratified techniques attempt to overcome this problem by "using information about the population" to choose a more "representative" sample.

SRS may also be cumbersome and tedious when sampling from an unusually large target population. In some cases, investigators are interested in "research questions specific" to subgroups of the population.

For example, researchers might be interested in examining whether cognitive ability as a predictor of job performance is equally applicable across racial groups. SRS cannot accommodate the needs of researchers in this situation because it does not provide subsamples of the population. Systematic sampling also known as interval sampling relies on arranging the study population according to some ordering scheme and then selecting elements at regular intervals through that ordered list.

Systematic sampling involves a random start and then proceeds with the selection of every k th element from then onwards. It is important that the starting point is not automatically the first in the list, but is instead randomly chosen from within the first to the k th element in the list. A simple example would be to select every 10th name from the telephone directory an 'every 10th' sample, also referred to as 'sampling with a skip of 10'. As long as the starting point is randomized , systematic sampling is a type of probability sampling.

It is easy to implement and the stratification induced can make it efficient, if the variable by which the list is ordered is correlated with the variable of interest. For example, suppose we wish to sample people from a long street that starts in a poor area house No. A simple random selection of addresses from this street could easily end up with too many from the high end and too few from the low end or vice versa , leading to an unrepresentative sample. Note that if we always start at house 1 and end at , the sample is slightly biased towards the low end; by randomly selecting the start between 1 and 10, this bias is eliminated.

However, systematic sampling is especially vulnerable to periodicities in the list. If periodicity is present and the period is a multiple or factor of the interval used, the sample is especially likely to be un representative of the overall population, making the scheme less accurate than simple random sampling. For example, consider a street where the odd-numbered houses are all on the north expensive side of the road, and the even-numbered houses are all on the south cheap side.

Under the sampling scheme given above, it is impossible to get a representative sample; either the houses sampled will all be from the odd-numbered, expensive side, or they will all be from the even-numbered, cheap side, unless the researcher has previous knowledge of this bias and avoids it by a using a skip which ensures jumping between the two sides any odd-numbered skip. Another drawback of systematic sampling is that even in scenarios where it is more accurate than SRS, its theoretical properties make it difficult to quantify that accuracy.

In the two examples of systematic sampling that are given above, much of the potential sampling error is due to variation between neighbouring houses — but because this method never selects two neighbouring houses, the sample will not give us any information on that variation.

As described above, systematic sampling is an EPS method, because all elements have the same probability of selection in the example given, one in ten. It is not 'simple random sampling' because different subsets of the same size have different selection probabilities — e. When the population embraces a number of distinct categories, the frame can be organized by these categories into separate "strata. There are several potential benefits to stratified sampling.

First, dividing the population into distinct, independent strata can enable researchers to draw inferences about specific subgroups that may be lost in a more generalized random sample. Second, utilizing a stratified sampling method can lead to more efficient statistical estimates provided that strata are selected based upon relevance to the criterion in question, instead of availability of the samples. Even if a stratified sampling approach does not lead to increased statistical efficiency, such a tactic will not result in less efficiency than would simple random sampling, provided that each stratum is proportional to the group's size in the population.

Third, it is sometimes the case that data are more readily available for individual, pre-existing strata within a population than for the overall population; in such cases, using a stratified sampling approach may be more convenient than aggregating data across groups though this may potentially be at odds with the previously noted importance of utilizing criterion-relevant strata.

Finally, since each stratum is treated as an independent population, different sampling approaches can be applied to different strata, potentially enabling researchers to use the approach best suited or most cost-effective for each identified subgroup within the population. There are, however, some potential drawbacks to using stratified sampling. First, identifying strata and implementing such an approach can increase the cost and complexity of sample selection, as well as leading to increased complexity of population estimates.

Second, when examining multiple criteria, stratifying variables may be related to some, but not to others, further complicating the design, and potentially reducing the utility of the strata. Finally, in some cases such as designs with a large number of strata, or those with a specified minimum sample size per group , stratified sampling can potentially require a larger sample than would other methods although in most cases, the required sample size would be no larger than would be required for simple random sampling.

Stratification is sometimes introduced after the sampling phase in a process called "poststratification". Although the method is susceptible to the pitfalls of post hoc approaches, it can provide several benefits in the right situation. Implementation usually follows a simple random sample. In addition to allowing for stratification on an ancillary variable, poststratification can be used to implement weighting, which can improve the precision of a sample's estimates.

Choice-based sampling is one of the stratified sampling strategies. In choice-based sampling, [7] the data are stratified on the target and a sample is taken from each stratum so that the rare target class will be more represented in the sample. The model is then built on this biased sample. The effects of the input variables on the target are often estimated with more precision with the choice-based sample even when a smaller overall sample size is taken, compared to a random sample.

The results usually must be adjusted to correct for the oversampling. In some cases the sample designer has access to an "auxiliary variable" or "size measure", believed to be correlated to the variable of interest, for each element in the population. These data can be used to improve accuracy in sample design. One option is to use the auxiliary variable as a basis for stratification, as discussed above. Another option is probability proportional to size 'PPS' sampling, in which the selection probability for each element is set to be proportional to its size measure, up to a maximum of 1.

In a simple PPS design, these selection probabilities can then be used as the basis for Poisson sampling. However, this has the drawback of variable sample size, and different portions of the population may still be over- or under-represented due to chance variation in selections. Systematic sampling theory can be used to create a probability proportionate to size sample.

This is done by treating each count within the size variable as a single sampling unit. Samples are then identified by selecting at even intervals among these counts within the size variable. This method is sometimes called PPS-sequential or monetary unit sampling in the case of audits or forensic sampling. The PPS approach can improve accuracy for a given sample size by concentrating sample on large elements that have the greatest impact on population estimates.

PPS sampling is commonly used for surveys of businesses, where element size varies greatly and auxiliary information is often available—for instance, a survey attempting to measure the number of guest-nights spent in hotels might use each hotel's number of rooms as an auxiliary variable.

In some cases, an older measurement of the variable of interest can be used as an auxiliary variable when attempting to produce more current estimates. Sometimes it is more cost-effective to select respondents in groups 'clusters'. Sampling is often clustered by geography, or by time periods. Nearly all samples are in some sense 'clustered' in time — although this is rarely taken into account in the analysis. For instance, if surveying households within a city, we might choose to select city blocks and then interview every household within the selected blocks.

Clustering can reduce travel and administrative costs. In the example above, an interviewer can make a single trip to visit several households in one block, rather than having to drive to a different block for each household.

Resource Links:

Main Topics

Privacy Policy

Probability sampling is a technique wherein the samples are gathered in a process that gives all the individuals in the population equal chance of being selected. Many consider this to be the more methodologically rigorous approach to sampling because it eliminates social biases that could shape the research sample.

Privacy FAQs

In simple random sampling, every member of the population has an equal chance of being chosen. The drawback is that the sample may not be genuinely representative. Small but important sub-sections of the population may not be included. Researchers therefore developed an alternative method called stratified random sampling. This method .

About Our Ads

Module 2: Study Design and Sampling Study Design Cross-sectional studies are simple in design and are aimed at finding out the prevalence of a phenomenon, problem, attitude or issue by taking a snap-shot or cross-section of the population. The purpose of this paper is to provide a typology of sampling designs for qualitative researchers. We introduce the following sampling strategies: (a) parallel sampling designs, which represent a body of sampling strategies that facilitate credible comparisons of two or more different subgroups that are extracted from the same levels of study; (b) nested sampling designs, which are sampling.

Cookie Info

Sampling method refers to the rules and procedures by which some elements of the population are included in the sample. Some common sampling methods are simple random sampling, stratified sampling, and cluster sampling. hi, thank you for sharing your slides on sampling design, I find them very useful material for my course on research methods. Best to you.